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SUPERSONIC LATERAL-DIRECTTIONAL STABILITY CHARACTERISTICS
OF A 45° SWEPT WING-BODY-TAIL MODEL WITH
VARIOUS BODY CROSS-SECTIONAL SHAPES

By Dennis E. Fuller and James F. Campbell
Langley Research Center

SUMMARY

An investigation has been made in the Langley 4- by 4-foot supersonic pres-
sure tunnel to determine the lateral, directional, and longitudinal stability
characteristics of a 45° swept wing-body-tail model having various body cross-
sectional shapes. The cross-sectional shapes tested include a circle, an
ellipse, a flat-bottom teardrop, an upright triangle, and an inverted triangle.
Tests were performed at angles of attack of about -4° to 229, at angles of side-
slip from about -4° to 8°, at Mach numbers of 1.41 and 2.20, and at a Reynolds
number per foot of 3.0 X 106.

The results indicate that the directional stability, particularly for high
angles of attack, was found to be dependent on body cross-sectional shape. A
circular fuselage generally indicates the least effects of angle of attack on
the lateral-directional stability characteristics of any of the body shapes
tested.

INTRODUCTION

There is a continuing problem of providing adequate lateral and directional
stability for aircraft operating in the supersonic speed range. Previous
papers, such as references 1 and 2, have described some of the sources of this
problem and pointed out some of the factors that affect the stability at super-
sonic speeds. However, there is still a general lack of information in the
supersonic speed range concerning the effects of various design variables on
the static stability characteristics.

Some effort has been expended to determine the effect of body cross-
sectional shape on the longitudinal stability and performance characteristics
of bodies, wing-bodies, and aircraft (refs. 3, 4, and 5), but these studies
have not included the lateral and directional stability characteristics.
Accordingly, an investigation has been undertaken to determine the effect of



some basic fuselage shapes on the lateral and directional stability character-
istics and on the vertical-tail effectiveness of wing-body-tail configurations
at supersonic speeds. The cross-sectional shapes of the bodies included a
circle, an ellipse, a flat-bottom teardrop, an upright triangle, and an inverted
triangle. The wing and vertical tail for all of the bodies were the same.

Tests to obtain the longitudinal characteristics of the various configurations
were also included.

The tests were performed in the Langley 4- by L-foot supersonic pressure
tunnel at Mach numbers of 1.41 and 2.20, at angles of attack from about -4° to
229, and angles of sideslip from about -4° to 8°. The test Reynolds number was

3.0 x 100 per foot.

SYMBOIS

The lateral force and moment data are referred to the body axis system and
the longitudinal force and moment data are referred to the stability axis sys-
tem. The reference center of moments was located at the 45.k-percent station
of the fuselage. The symbols used are defined as follows:

a' semiminor axis
b' semimajor axis
b . wing span, 24.00 in.
é wing mean geometric chord, 6.89 in.
Cp drag coefficient, ggig
e, Lift coefficient, L;it
as
Cnm pitching-moment coefficient, Pitching moment
Sy
Cy rolling-moment coefficient, Rolling moment
as,b
)
CIB = 2B
Mg = (CZB> - (C-LB>
tail-on or wing-on tail-off or wing-off



Yawing moment
gqSyb

Cn yawing-moment coefficient,

CnB =A_B—

ong = (Cng) - (c )
g o8 tail-on or wing-on N8)tail-off or wing-off

Side force

Cy side-force coefficient, o
Ay
“tp "5
ACYB - (CYB)tail-on or wing-on B <CYB)tail—off or wing-off
L/D lift-drag ratio
M free-stream Mach number
q free-stream dynamic pressure
r radius
Sw reference wing area, 1.0 sq ft
X distance from nose, rearward
y distance from model center line, downward
a angle of attack, deg
B éngle of sideslip, deg

APPARATUS AND TESTS

Model

Drawings of the model are presented in figure 1. Body cross-sectional
areas and lateral areas are presented in table T and body nose coordinates are
presented in table II. The wing had 45° sweepback of the quarter-chord line,
an aspect ratio of 4, a taper ratio of 0.2 and NACA 65A004 airfoil sections in
the streamwise direction. The vertical tail had a hexagonal section with 42°©
sweepback of the leading edge. The wing and vertical tail were affixed to a



steel core over which the various body shapes were fitted. Hence, for some of
the body shapes, there are geometric variations in the exposed vertical-tail
area and the vertical location of the wing relative to the body. The various
body shapes were constructed of wood with a fiber-glass surface with the excep-
tion of the circle which had a stainless-steel nose.

TABLE I.- BODY CROSS-SECTIONAL AND LATERAL AREAS

Cross-sectional area, Lateral ares,
Body shape sq in. sq ft
Circle 9.621 0.856
Ellipse 1h. 432 1.287
Flat-bottom teardrop 13.022 1.064
Tnverted and upright triangle 14.496 1.086
Tunnel

Tests were conducted in the ILangley 4- by U-foot supersonic pressure tun-
nel which is a continuous-flow tunnel with variable-pressure capability. The
nozzle leading to the test section is symmetrical and may be manually changed
to provide Mach numbers from about 1.4 to 2.2. )

Test Conditions

The tests were performed at the following conditions:

Mach Stagnation temperature, Stagnation pressure, Reynolds number,
number OF 1b/sq in. abs per ft
1.4 110 10.3 3.0 x 100
2.20 110 13.2 3.0 x 106

The stagnation dewpoint was maintained at -30° F in order to avoid condensation
effects. Tests were performed through an angle-of-attack range from about -4°
to 22° and through a sideslip angle range from about -4° to 8°. In order to
obtain turbulent flow over the model, a 1/l6-inch-wide strip of No. 60 carborun-
dum grains was affixed around the body one-half inch from the nose and on the
wing and tail one-half inch from the leading edge in a streamwise direction.



TABLE IT.- BODY NOSE COORDINATES

Circle
X, in. ¥y, in.
0.000 0.000
.500 143
1.000 .278
1.500 .4o8
2.000 .532
3.000 .T61
4,000 .965
5.000 1.145
6.125 1.319
7.125 1.448
8.125 1.550
9.125 1.639
10.125 1.698
11.125 1.735
12.250 1.750
Flat-bottom teardrop
. a', in. . s .
X, in. (%) b', in. r, in.
0.000 0.000 0.000 0.000
.500 .143 .215 .070
1.000 .278 R id .137
1.500 .408 .612 .201
2.000 .532 .798 .262
3.000 761 1.1k 375
4k.000 .965 1.448 475
5.000 1.145 1.718 564
6.125 1.319 1.979 .650
T7.125 1.448 2.172 722
8.125 1.550 2.325 .763
9.125 1.639 2.459 .807
10.125 1.698 2.547 .836
11.125 1.735 2.603 855
12.250 1.750 2.625 .862

X,

O

kg
H O\ 0O~ O\ £\ [V =

in.

.000
.500
.000
.500
.000
.000
.000
.000
.125
.125
.125
.125
.125
.125
.250

Ellipse
a', in. b', in.
0.000 0.000
.143 L194
.278 L1
.408 612
.532 798
761 1.142
.965 1.448
1.145 1.718
1.319 1.979
1.448 2.172
1.550 2.3%25
1.639 2.459
1.698 2.547
1.735 2.603
1.750 2.625

Triangle, upright
and inverted

X, in. Y, in. r, in.
0.000 | 0.000 0.000
.500 .143 .06k
1.000 .278 .137
1.500 .4o8 .201
2.000 532 262
3.000 .T61 375
4,000 .965 75
5.000 | 1.145 .564
6.125 | 1.319 .650
7.125 | 1.448 722
8.125 | 1.550 .763
9.125 | 1.639 .807
10.125 | 1.698 .836
11.125 | 1.735 .855
12.250 | 1.750 .862




Measurements

Aerodynamic forces and moments were measured by means of a six-component
electrical strain-gage balance housed within the model. The balance, in turn,
was rigidly fastened to a sting support and thence to the tumnel support system.
The balance-chamber pressure was measured by means of a single static orifice
in the balance cavity of each model for all test conditions.

Accuracy

The accuracy of the measured quantities, based on calibrations and repeat-
ability of data is estimated to be within the following limits:

CD ¢ o o o o o « o s e o« s s o o o s o o o v 4 e e 4w s e 4 e o . . . F0.0002
O < I ¢ 02 §
Cy, - o . e . . . e e e e e e e e e . $0.002
Cn « . - . . .. . . . . . e+« s s« . . . F0.0002
Cmp - . .. . . . . . - -0 JY 00 o)
Cy « « » . . . . e e e e s e e s e e 4 e e s e e e e 10.001
a, deg . . . . e e e e e e e e . 10.10
B, deg . . . e e e . . . . .« . . . 10.10
M .. .« . . . . . .« v e . . . . . 10.01
Corrections

Angles of attack and sideslip were corrected for deflection of the balance
and sting support as a result of aerodynamic loads. The drag data were adjusted
to correspond to free-stream static conditions in the balance chamber.

PRESENTATION OF RESULTS

The results of the investigation are presented in the following figures:

Figure

Typical aerodynamic characteristics in sideslip. Wing on;

M=1.4 ... .. e e e e e e e e e e e e e e e e e 2
Typical aerodynamic characterlstlcs in 81desllp Wing on;

M=2.20 .. ... e e e e e . . e e e 3
Variation of sideslip parameters with angle of attack for the

circular fuselage. Wing on; M = 1,41 and 2.20 . . . . . .. N
Variation of sideslip parameters with angle of attack for the flat-

bottom teardrop fuselage. Wing-on; M = 1.41 and 2.20 . . . . . . . 5
Variation of sideslip parameters with angle of attack for the

elliptical fuselage. Wing on; M= 1.41 and 2.20 . . . . . . . . . . 6



Figure

Variation of sideslip parameters with angle of attack for the upright

and inverted triangular fuselage. Wing on; M = 1.41 and 2.20 . . . . T
Variation of sideslip parameters with angle of attack for the upright

and inverted triangular fuselage. Wing off; M = 1.41 and 2.20 . . . 8
Variation of vertical-tail contribution to sideslip derivatives for

various body shapes. Wing on; M = 1.4l and 2.20 . . . . . . . . . . 9

Effect of wing on the variatlion of vertical-tail contribution to
sideslip derivatives for upright and inverted triangular bodies.

M=1.41 and 2.20 . « v ¢« v v 4« ¢ 4 e e e e e e e e e e e e e e e e 10
Effect of fuselage cross-sectional shape on aerodynamic character-
istics in pitech. M = 1.41 and 2.20 . . . « « v« ¢ v 4 e 4 v e e e 11

RESULTS AND DISCUSSION

Basic aerodynamic characteristics in sideslip for the circular and the two
triangular body configurations are presented in figures 2 and 3 for angles of
attack of about 09, 11°, and 16°. These figures are presented primarily to
indicate the linearity of the data since the sideslip parameters presented
herein were obtained from incremental results of tests made through the angle-
of-attack range at sideslip angles of about 0° and 4°. The sideslip coefficients
are essentially linear with sideslip angle with the exception of some of the
results at an angle of attack of about 16° wherein the nonlinearity will cause
some error in the absolute values of the sideslip parameters presented.

The variation of the sideslip parameters with angle of attack for all the
configurations are presented in figures 4 to 8 and the tail contributions to
the sideslip derivatives are presented in figure 9. A direct comparison of
the results cannot be made since the inhdividual models represent separate con-
figurations that differ not only in cross-sectional shape and area (see table I)
but also in exposed tail and wing area, relative wing height, and lateral area.

As the angle of attack is increased the variation of the sideslip deriva-
tives becomes involved and is partly dependent on the cross-flow pattern about
the bodies and the formation of wake patterns from the forebody and wing-body
Juncture. In general, the circular body, which is the only shape that con-
sistently provides a symmetrical cross-flow pattern at combined angles of attack
and sideslip, indicates the least variation of sideslip derivatives and tail
contribution with angle of attack. (See figs. 4 and 9.)

The only configurations having substantial differences in cross section
while maintaining the same volume and area distribution are those with the
upright and inverted triangular sections. For the purpose of comparison, the
results for these configurations with the wing on are presented in figure 7 and
with the wing removed in figure 8. The results indicate that differences occur
in the sideslip characteristics for the two body shapes. Near o = 0°, for
example, the directional stability, with wing on and wing off, is greater with
the inverted triangle fuselage than with the upright triangle fuselage, pre-
sumably because the vertical tail on the inverted triangle fuselage has a



slightly greater exposed area. However, with increasing angle of attack, the
upright triangle fuselage indicates less deterioration in CnB than the

inverted triangle fuselage, and at high angles of attack results in a substan-
tially higher level of directional stability. This higher level of stability
is influenced both by the tail contribution and the tail-off stability charac-
teristics, and a comparison of the wing-on and wing-off results indicate these
factors are also influenced by the wing. (See figs. 7, 8, and 10.) Although
it is not possible to isolate completely the causes of these results from total
force and moment measurements, the variations in the results do point out a
strong effect of body cross section that adds to the complexity of the lateral-
directional stability characteristics and indicate some of the factors that
must be considered in attempting to solve the lateral-directional stability

problems.

The aerodynamic characteristics in pitch for the test configurations are
presented in figure 11. Since some of the bodies were of different volumes as
well as cross-sectional areas, no attempt has been made to analyze these data.

SUMMARY OF RESULTS

Tests to determine the static lateral-directional stability characteristics
at Mach numbers of 1.41 and 2.20 of configurations having various body cross-
sectional shapes indicated the following results:

1. The directional stability, particularly for high angles of attack, was
found to be dependent on body cross-sectional shape.

2. A circular fuselage generally indicated the least effects of angle of
attack on the lateral-directional stabilitty characteristics of any of the body
shapes investigated.

Iangley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., April 18, 196k4.
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M = 1.41; upright triangle.
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Figure 10.- Effect of wing on the variation of vertical-tail contribution to sideslip derivatives
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for upright and inverted triangular bodies.
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M = 2.20; upright triangle.

Figure 10.- Continued.
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